Informative Bayesian Model Selection: a method for identifying interactions in genome-wide data.

نویسندگان

  • Mehran Aflakparast
  • Ali Masoudi-Nejad
  • Joseph H Bozorgmehr
  • Shyam Visweswaran
چکیده

In high-dimensional genome-wide (GWA) data, a key challenge is to detect genomic variants that interact in a nonlinear fashion in their association with disease. Identifying such genomic interactions is important for elucidating the inheritance of complex phenotypes and diseases. In this paper, we introduce a new computational method called Informative Bayesian Model Selection (IBMS) that leverages correlation among variants in GWA data due to the linkage disequilibrium to identify interactions accurately in a computationally efficient manner. IBMS combines several statistical methods including canonical correlation analysis, logistic regression analysis, and a Bayesians statistical measure of evaluating interactions. Compared to BOOST and BEAM that are two widely used methods for detecting genomic interactions, IBMS had significantly higher power when evaluated on synthetic data. Furthermore, when applied to Alzheimer's disease GWA data, IBMS identified previously reported interactions. IBMS is a useful method for identifying variants in GWA data, and software that implements IBMS is freely available online from http://lbb.ut.ac.ir/Download/LBBsoft/IBMS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

Project Portfolio Risk Response Selection Using Bayesian Belief Networks

Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...

متن کامل

Identifying genetic interactions in genome-wide data using Bayesian networks.

It is believed that interactions among genes (epistasis) may play an important role in susceptibility to common diseases (Moore and Williams [2002]. Ann Med 34:88-95; Ritchie et al. [2001]. Am J Hum Genet 69:138-147). To study the underlying genetic variants of diseases, genome-wide association studies (GWAS) that simultaneously assay several hundreds of thousands of SNPs are being increasingly...

متن کامل

Bayesian Exploration of Multilocus Interactions on the Genome-Wide Scale

Problem statement: Recent technological and scientific advances propelled the field of Genome-Wide Association Study (GWAS), which promises to be instrumental in linking many common complex diseases to their genetic origin. While so far such large-scale surveys have been moderately successful in identifying disease related genetic variants, much of disease heritability is still not accounted fo...

متن کامل

An algorithm for learning maximum entropy probability models of disease risk that efficiently searches and sparingly encodes multilocus genomic interactions

MOTIVATION In both genome-wide association studies (GWAS) and pathway analysis, the modest sample size relative to the number of genetic markers presents formidable computational, statistical and methodological challenges for accurately identifying markers/interactions and for building phenotype-predictive models. RESULTS We address these objectives via maximum entropy conditional probability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 2014